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1 Introduction

In many high-energy synchrotrons and storage rings operating with bunched
beams, instabilities occur due to coupling from bunch to bunch by wake
fields in the surrounding vacuum chamber structures. The most direct cure
is to reduce the strength of the wake fields by changing the structures which
cause the strongest wakes, e.g. damping of higher modes (HOMs) in rf
and/or incidental cavities, such as kicker tanks, or sleeving (shielding) of
unavoidable cross section variations such as bellows or pumping T’s. A time
honored method is to simply change the temperature of the cooling water
which may change the frequency of the resonant modes in a cavity sufficiently
to avoid coupling to an unstable beam mode of oscillation. However, in many
instances these methods are insufficient and other measures have to be used,
such as feedback systems. However, for machines with a large number of
bunches such systems usually need to have a rather broad bandwidth and
also require costly space around the machine circumference.

It is often simpler to rely on reducing the coupling between bunches by
other means. One method is to vary the distance between bunches - e.g. in-
troducing gaps of different lengths by leaving out a certain number of bunches
from the regularly spaced “buckets” formed by the rf voltage. However, un-
even spacing may have disadvantages - in particular for colliders where the
bunches should meet the opposing beam at the fixed locations of detectors.
Therefore it is often preferable to reduce coupling by varying the natural
oscillation frequencies of the bunches.
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For longitudinal oscillations, the natural frequency of oscillation of a
bunch is its coherent synchrotron frequency ωs. It changes very little with
the number of particles in a bunch, hence their variation would be ineffi-
cient. However, ωs is proportional to the square root of the rf voltage, and
a modulation of the voltage seen by each bunch is thus often sufficient to
inhibit an instabilitity. This technique has been applied already many years
ago, e.g. at ADONE in Frascati (quoted in [1], in the CERN PS[2], at
DORIS at DESY[3] and in the Fermilab booster[4], where a voltage modula-
tion was obtained by simply changing the harmonic number of one or two rf
cavities. To my knowledge, the first quantitative analysis was published by
Dieter Moehl[1] and provided a “decoupling criterion”. A number of papers
followed[5, 6] which supplemented - and partially contradicted - these early
findings as will be discussed below.

For transverse bunch oscillations, the coherent betatron frequency changes
with the number of particles in a bunch, and hence a variation of the bunch
currents sometimes has the desired effect. However, this is often not accept-
able for other reasons, and also may be too weak. It can then be supple-
mented or replaced by other means such as a radio frequency quadrupole
(RFQ), which method has been used successfully in DORIS[3]. Nowadays
feedback systems are most often used to stabilize transverse bunch oscilla-
tions as wider bandwidths have become accessible with digital techniques.

2 The decoupling criterion

In order to estimate the required modulation depth for a given strength
of wake fields, the analysis in ref.[1] starts from the linearized equation of
motion describing the oscillations of a characteristic quantity , e.g. the phase
displacement from the equilibrium position for the longitudinal dipole mode,
or the bunch length for the corresponding quadrupole mode. Assuming a
train of n bunches, the equation of motion for the �-th bunch are written

d2x�

dt2
+ ω2

�x� = 2ω̄
n∑

m=1

W�mxm (1)

where ω� is the (coherent) synchrotron frequency of the �-th bunch and W�m

the wake field of the m-th bunch acting on the �-th one. The average fre-
quency ω̄ is introduced such that the “wake fields”, which are actually “dis-
persion relation coefficients”[9] W = U + iV , have the dimensions of a fre-
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quency1. Searching for exponential solutions proportional to exp(iλt), one
obtains a system of n homogeneous linear equations

∑
M�mxm = 0 with

�,m = 1, 2, ..n, where

M�m =




W�m for m �= � ,

W�� − ω2
� + λ2 for m = � .


 (2)

Solutions of such a system of equations are only possible if its determinant
vanishes, i.e. detM�m = 0 or

det
[
2ω̄W�m − δ�m(ω

2
� − λ2)

]
= 0 (3)

The eigenvalues λ are usually quite close to the natural frequencies ω�, there-
fore ω2

� − λ2 ≈ 2ω̄(ω� − λ) and one obtains the simpler condition

det [W�m − δ�m(ω� − λ)] = 0 (4)

A spread in the diagonal wake fields W�� is equivalent to a spread of the
frequencies ω� and thus need not be studied separately.

First the author investigates the case of short range wakes, extending
only to the next bunch, i.e. W�m = 0 except when m = � + 1. Introducing
the average wake field W̄ = (Πn

�=1W�+1,�)
1/n one obtains the characteristic

equation which determines λ

Πn
�=1(ω� − λ) = W̄ n , (5)

with the solutions λ = ω� − W̄ exp(2πi�/n). One sees that a spread of the
wake fields will not strongly influence the result which depends only on their
geometrical average.

Next assume that the synchrotron frequency has a sinusoidal modulation
from bunch to bunch

ω� = ω̄ +∆ω cos

(
2π�

n
+ φ

)
(6)

where φ is the phase of the modulation which can be chosen. For φ = π/n
only half the bunches have different frequencies, while for φ = π/2n, they

1In the original definition, only the transverse dispersion relation coefficients had the di-
mension of inverse time[9], while the longitudinal ones were defined as energies; converting
them to frequencies needs additional scaling
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are all different. It is expedient to introduce dimensionless quantities

α� =
ω� − ω̄

∆ω
= cos

(
2π�

n
+ φ

)
,

∆ =
λ− ω̄

∆ω
= cos θ , (7)

Then one obtains the equation

Πn
�=1(α� −∆) = Πn

�=1

[
cos

(
2π�

n
+ φ

)
− cos θ

]
=

(
W̄

∆ω

)n

. (8)

The finite product over � can be converted, using Eq.1.395.1 of ref[8]2, to get
for φ = π/n

Πn
�=1(α� −∆) =

1

2n−1
[cos(nφ)− cos(nθ)] (9)

and thus

cos(nθ) = cos(nφ)−
(−2W̄

∆ω

)n

. (10)

For the usual case |W̄ | � ∆ω, one obtains the “decoupling criterion” for
short range wakes

∆ω ≥ 2|W̄ | (11)

which is claimed to be sufficient for a large reduction of the growth rate of
the coupled bunch instability.

For the case of long range wakes, which couple all bunches together (“high
Q case”), the analysis leads to the condition

sin θ cot
(
n

2
θ
)
≤ − W̄

∆ω
. (12)

When one assumes |W̄ | � δω and expands in δω, convergence is obtained
only under the additional condition |W |/∆ω � 2/n. Then one finds a re-
duction of the growth rate 1/τ by a factor 3/n.

If the number of bunches is large, n � 1, this additional condition is
often too stringent, but then the approximation cot(nθ/2) ≈ −i can be used
to get another form of the “decoupling criterion”

∆ =

√√√√1 +

(
W̄

∆ω

)2

. (13)

2correcting a mis-print in Eq.(14) of the original paper - the factor 2(n−1) is on the
wrong side
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For |W̄ | � ∆ω, the growth rate will then be reduced by a factor |ReW̄|/∆ω.
For φ = π/n the same equations hold with n/2 replaced by n.

In an existing machine, the imaginary part of V = ImW can be found
from the growth rate of an instability since V = 1/τ . The imaginary part
is related to the incoherent synchrotron frequency shift with current which
is more difficult to measure. For machines with a dominant resistive wall
impedance U ≈ V , and hence |W | = √

U2 + V 2 = V
√
2. Solution of Eq.(13)

then permits the calculation of the growth rate for a given modulation depth.

3 Stability region for sinusoidal modulation

Many years after the original report, the problem of damping a multi-bunch
instability by a bunch to bunch frequency spread was analyzed at DESY in
the framework of Landau damping[6]. There transverse motion was studied,
including kicks due to transverse wake fields, summing them over all other
bunches and all previous turns. With the longitudinal position s as inde-
pendent variable, the equation of motion of the �-th bunch in a total of n
bunches can be written

d2y�

ds2
+ k2

�y� =
e2

2πRE

∞∑
m=−∞

n−1∑
j=0

QjW⊥(t� − tj)yj(s− 2πRm) , (14)

where k� is the betatron wave number in a storage ring with circumference
2πR, yj the vertical displacement and Qj the charge of the j-th bunch3 Due
to causality, the (transverse) wave function W⊥(t) must vanish for negative
arguments, and thus the summation over m could be extended over all turns
from −∞ to +∞. For equal spacings, the time interval between bunches is

tm − t� =

(
m− �

n
+ k

)
T (15)

where T is the revolution time. Introducing the impedance Z⊥ as the Fourier
transform of the wake function. and looking for exponential solutions of the
equation of motion, one again obtains a set of simultaneous, homogeneous,
linear equations. A solution can be found only if the determinant det(I−M)

3The dimensions of the factor used on the RHS are only correct if Qj is the normalized
charge Q/e, and W the wake function per unit length, i.e.W⊥/2πR; we also use the energy
E = γm0c

2.

5



vanishes, where the matrix elements for equally populated bunches Q� = Q
are given by

Mqp = i
e2QR

2πET
Z⊥[(p+ ν)ω0]

n−1∑
�=0

1

ν2
� − ν2

exp

[
2πi(q − p)

�

n

]
. (16)

where ν is the oscillation tune to be determined.
For a single, sharp impedance the determinant reduces to the single term

for which (p+ ν)ω0 is close to the resonant frequency. One gets the charac-
teristic equation

1 =
ie2R

2πET
Z⊥[(p+ ν)ω0]

n−1∑
�=0

Q�

ν2
� − ν2

. (17)

A distribution of tunes around the unperturbed ν0 value may be written

ν� = ν0 +∆ν
x�

2
, (18)

where −1 < x� < 1 is determined by the form of the modulation. For
∆ν � ν0, one may approximate ν2

� − ν2 ≈ 2ν0(ν� − ν) and introduce the
(dimensionless) transverse “dispersion relation coefficients”

U + iV = −i
e2QR

ET
Z⊥[(p+ ν)ω0]

n

2ν0∆ν
(19)

to obtain the characteristic equation

1 = −(U + iV )
∆ν

n

n−1∑
�=0

1

ν� − ν
. (20)

One may replace the summation by an integration, which is easier to handle
analytically, when the oscillation tune ν is further removed from the real axis
than the spacing between neighboring bunch tunes ν�. This condition can be
written Im ν > ∆ν/n, i.e. it is of interest for fast growth rates and is most
easily fulfilled for a large number of bunches.

The dispersion relation for a sinusoidal modulation with harmonic one
then becomes, with x1 = 2(ν − ν0)/∆ν :

1 = −(U + iV )
1

π

∫ π

−π

dx

sin x− x1
. (21)
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The integration yields

1 = −(U + iV )




2i√
x2

1 − 1
for |Rex1| > 1

2i√
1− x2

1

for |Rex1| < 1




(22)

The stability limit Im x1 = 0 consists of 2 coincident lines, up and down the
V-axis, and has thus zero area. Therefore there is no stability possible for
sinusoidal modulation with harmonic one in a single resonator impedance.

This does not directly contradict the former findings, where actually only
a reduction of the growth rate was obtained. However, it strengthens the
case for the use of other than sinusoidal modulation with harmonic one,
e.g. using a higher harmonic. In the conclusions, the paper recommends
fractional filling to fight multi-bunch instabilities.

A second DESY report from the same period[3] discusses the effect of fre-
quency modulation on the required bandwidth of a feedback system. Usually
the bandwidth needed is essentially given by the spacing between bunches
and can thus become quite large for multi-bunch storage rings. However, if
the bunch frequencies are split by a modulation, the required bandwidth is
given by its frequency width and thus may often be drastically reduced. In
addition, a barycentric feedback will then also damp higher modes which are
thereby coupled to the lowest mode.

Due to a frequency splitting, each bunch “sees” essentially only the signal
from to its own motion, while the signals of all other bunches average out.
It is thus important that all bunches have different frequencies and not two
of them are alike. Then the maximum damping rate can be estimated by

δr =
∆ω

2S(n)
, (23)

where ∆ω is the frequency difference between bunches, and S(n) =
∑n−1

j=1 1/j
which for large n can be approximated by S(n) = C + log(n − 1) where
C ≈ 0.577 is Eulers constant. Finally, experimental verification of these
results at the storage ring PETRA is also reported there.
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4 Application to Fermilab machines

The 8 rf cavities in the Tevatron collider are arranged such that 4 of them
accelerate protons in one direction and 4 anti-protons in the other. This is
achieved by locating them 3/4 wave lengths apart, and phasing them with
±π/2 phase shift. In this manner actually 6 cavities accelerate in one direc-
tion, while the other 2 decelerate, and similar in the opposite sense.

The exact distance between cavities is thus related to their wave length
(or frequency), and even a small modulation would destroy this delicate bal-
ance. We conclude therefore that a frequency modulation by changing the
rf harmonic of one or more cavities in the Tevatron collider is not possible
without a complete redesign of the rf system. However, a longitudinal feed-
back system or “damper” has recently been completed and it is hoped that
it will be capable of keeping the bunches stable.

The situation is different in the Fermilab Booster, where 18 cavities are
used to accelerate protons in just one direction. For operation with high
currents, a longitudinal coupled-bunch instability occurs which dilutes the
beam. Already many years ago[4] it has been counteracted by detuning rf
cavities. Tuning 2 of n cavities from frequency hω0 down to (h− 1)ω0 yields

V1 = (n− 2)V cos(hω0t) + 2αV cos[(h+ 1)ω0t]

= V {cos(hω0t) [(n− 2) + α cos(ω0t)] + α sin(ω0t) sin(hω0t)} (24)

where α describes the reduction of rf voltage when a cavity is detuned. The
actual reduction depends on the bandwidth of the cavity, and the detuning
is efficient only it is large enough to keep a sufficient voltage at the harmonic
sideband. Tuning one cavity up and another one down by one harmonic each
results in a cleaner modulation of the rf frequency with the first harmonic or
revolution frequency

V2 = (n− 2)V cos(hω0t) + αV cos[(h+ 1)ω0t] + αV cos[(h− 1)ω0t]

= V cos(hω0t) [(n− 2) + 2α cos(ω0t)] . (25)

Since the booster cavities have a wide tuning range required for proton ac-
celeration, we may assume α ≈ 1. Hence the modulation depth is about
2α/(n− 2) or nearly 10 %. If necessary, the modulation depth can be easily
increased by detuning more than 2 cavities. Picture of the rf voltage corre-
sponding to the Fermilab booster parameters (n = 18 and h = 84) are shown
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in Fig.1 for the case of 2 cavities tuned down, and Fig.2 when one cavity is
tuned down and one up by one harmonic number.

The desired modulation depth can be estimated from the frequency shift
obtained from Moehl’s “detuning criterion”[1] for long range wakes. In the
CERN PS with 20 bunches, it was found one needed approximately four
times the growth rate of the instability, ∆ω ≈ 4V = 4/τ . Unfortunately,
the growth rate of the longitudinal coupled bunch oscillations in the Fermi-
lab booster have not been given in ref[4], but the picture shows of a large
oscillation occurring 3 ms before extraction. Estimating the growth time τ
to be of the same order of magnitude, one only needs a frequency shift of
only 4/τ = 130s−1 to reduce the growth rate so it no longer dilutes the beam
before extraction.

For the proposed Fermilab proton driver, the situation would be similar
to that in the booster. There are 20 cavities foreseen, rather than only 18,
and their tuning range is somewhat smaller as injection is at higher energy
(600 instead of 400 MeV). Hence they are tunable from 42.1 to 52.8MHz,
corresponding to the 84-th harmonic as the energy increases to 8 GeV. Tun-
ing down to the 83-rd harmonic at top energy, corresponding to about 51.9
MHz, is thus no problem. Tuning up to the 85-th harmonic is outside the
normal tuning range and - depending on the quality factor of the cavity -
might reduce the voltage (α < 1). Detuning of a single cavity reduces the
modulation depth, but one can detune several cavities downwards.

Since the projected beam current is considerably higher than in the
booster, coupled bunch instabilities will have faster growth rates and need
more modulation to reduce it to acceptable values. The resistive wall effect
was estimated to cause a transverse coupled bunch instability with a growth
time of 3.3 ms[10]. However, the effects of the higher modes in the rf cavities,
which may cause both longitudinal and transverse coupled bunch instabili-
ties, are more difficult to estimate as their exact frequencies can not be known
to sufficient accuracy. However, as the beam accelerates, its harmonics move
rapidly through any fixed higher-order modes, which thus remain dangerous
only for the last few ms when the frequency change is small. Hence one has
to bring the growth rate down to the order of a fraction of one ms to avoid
large oscillation amplitudes which could lead to large oscillations and subse-
quent emittance dilution. Only a narrow-band longitudinal feedback system
is necessary, of the order of the frequency modulation[3].

Application of the detuning method to the Fermilab Main Injector is
somewhat different. This machine accelerates protons (or anti-protons) from
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8 to 150 GeV, and the rf frequency operating on the 588-th harmonic, changes
only from 52.8 to 53.1 MHz. As the frequency range of its rf-system can be
limited to less than 300 KHz, the cavities need not be tunable but need only
have sufficient bandwidth. Since in this large ring the revolution frequency
is only about 95 KHz, detuning at top energy by plus or minus one harmonic
should be well inside this cavity bandwidth. However, due to the higher
beam current, the coupled bunch instabilities driven by higher modes in the
cavities might have rather short growth times and need to be damped -
either by mode-dampers in the cavities, or by a feedback which could again
have reduced bandwidth if the synchrotron frequencies of the bunches are
modulated.

5 Conclusions

We discussed several means of damping coupled-bunch instabilities in the
Tevatron collider and its injectors. In particular, we have studied a number of
publications treating stabilization of longitudinal oscillations by modulating
the synchrotron frequencies from bunch to bunch. Some of these papers come
to slightly different conclusions which appear contradictory at first sight, but
are actually due to the limitation of these methods to only reduce the growth
rates rather than completely stabilize a beam. In particular, a spread in the
synchrotron frequencies can be obtained simply by detuning of one or several
rf cavities which was envisaged for improving the operation several of the
rings used in run-II.

Unfortunately, detuning of rf cavities is not applicable to the Tevatron
collider itself due to the particular arrangement of the cavities there which
have to accelerate counter-rotating beams. However, this method could be
used in the Fermilab booster, where it has already been tried many years ago
with limited success. We apply Moehl’s “decoupling criterion” to show that
detuning of 2 cavities in opposite direction will reduce the growth rate of
the oscillations, but complete stabilization cannot be obtained unless other
means are applied simultaneously. In particular, the bandwidth requirements
for a bunch-by-bunch feedback system can be reduced considerably.

A similar argument holds for the proposed proton driver, while this
method might also be applied to the Main Injector, in particular when higher
proton currents are reached where coupled-bunch oscillations might cause
significant emittance dilution.
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Figure 1: Rf voltage (arbitrary units) versus time for one half revolution
period, tuning 2 of 18 rf cavities down from 84-th to 83-rd harmonic.
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Figure 2: Rf voltage (arbitrary units) versus time, tuning 1 of 18 rf cavities
from 84-th harmonic down to 83-rd, and 1 up to 85-th harmonic.
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